Superheating

Superheating is the phenomenon in which a liquid is heated to a temperature higher than its boiling point, without boiling. This is a so-called metastable state or metastate, where boiling might occur at any time, induced by external or internal effects.

Superheating is achieved by heating a homogeneous substance in a clean container, free of nucleation sites, while taking care not to disturb the liquid.

Water is said to “boil” when bubbles of water vapor grow without bound, bursting at the surface. For a vapor bubble to expand, the temperature must be high enough that the vapor pressure exceeds the ambient pressure (the atmospheric pressure, primarily). Below that temperature, a water vapor bubble will shrink and vanish.

Superheating is an exception to this simple rule; a liquid is sometimes observed not to boil even though its vapor pressure does exceed the ambient pressure. The cause is an additional force, the surface tension, which suppresses the growth of bubbles.

Surface tension makes the bubble act like a rubber balloon (more precisely, one that is under-inflated so that the rubber is still elastic).

The pressure inside is raised slightly by the “skin” attempting to contract. For the bubble to expand, the temperature must be raised slightly above the boiling point to generate enough vapor pressure to overcome both surface tension and ambient pressure.

What makes superheating so explosive is that a larger bubble is easier to inflate than a small one; just as when blowing up a balloon, the hardest part is getting started. It turns out the excess pressure due to surface tension is inversely proportional to the diameter of the bubble.

This means if the largest bubbles in a container are only a few micrometres in diameter, overcoming the surface tension may require exceeding the boiling point by several degrees Celsius.

Once a bubble does begin to grow, the pressure due to the surface tension reduces, so it expands explosively. In practice, most containers have scratches or other imperfections which trap pockets of air that provide starting bubbles. But a container of liquid with only microscopic bubbles can superheat dramatically.

Superheating can occur when an undisturbed container of water is heated in a microwave oven. At the time the container is removed, the lack of nucleation sites prevents boiling, leaving the surface calm. However, once the water is disturbed, some of it violently flashes to steam, potentially spraying boiling water out of the container.

The boiling can be triggered by jostling the cup, inserting a stirring device, or adding a substance like instant coffee or sugar. The chance of superheating is greater with smooth containers, because scratches or chips can house small pockets of air, which serve as nucleation points.

Pridaj komentár

Zadajte svoje údaje, alebo kliknite na ikonu pre prihlásenie:

WordPress.com Logo

Na komentovanie používate váš WordPress.com účet. Odhlásiť sa /  Zmeniť )

Google photo

Na komentovanie používate váš Google účet. Odhlásiť sa /  Zmeniť )

Twitter picture

Na komentovanie používate váš Twitter účet. Odhlásiť sa /  Zmeniť )

Facebook photo

Na komentovanie používate váš Facebook účet. Odhlásiť sa /  Zmeniť )

Connecting to %s

%d blogerom sa páči toto: