Tsunami warning system

Tsunami warning system is used to detect tsunamis in advance and issue the warnings to prevent loss of life and damage to property. It is made up of two equally important components: a network of sensors to detect tsunamis and a communications infrastructure to issue timely alarms to permit evacuation of the coastal areas.

There are two distinct types of tsunami warning systems: international and regional. When operating, seismic alerts are used to instigate the watches and warnings; then, data from observed sea level height (either shore-based tide gauges or DART buoys) are used to verify the existence of a tsunami.

Other systems have been proposed to augment the warning procedures; for example, it has been suggested that the duration and frequency content of t-wave energy (which is earthquake energy trapped in the ocean SOFAR channel) is indicative of an earthquake’s tsunami potential.

With the speed at which tsunami waves travel through open water, no system can protect against a very sudden tsunami, where the coast in question is too close to the epicenter.

The first rudimentary system to alert communities of an impending tsunami was attempted in Hawaii in the 1920s. More advanced systems were developed in the wake of the April 1, 1946 (caused by the 1946 Aleutian Islands earthquake) and May 23, 1960 (caused by the 1960 Valdivia earthquake) tsunamis which caused massive devastation in Hilo, Hawaii.

While tsunamis travel at between 500 and 1,000 km/h (around 0.14 and 0.28 km/s) in open water, earthquakes can be detected almost at once as seismic waves travel with a typical speed of 4 km/s (around 14,400 km/h).

This gives time for a possible tsunami forecast to be made and warnings to be issued to threatened areas, if warranted. Until a reliable model is able to predict which earthquakes will produce significant tsunamis, this approach will produce many more false alarms than verified warnings.

Tsunami warnings for most of the Pacific Ocean are issued by the Pacific Tsunami Warning Center (PTWC), operated by the United States NOAA in Ewa Beach, Hawaii. NOAA’s National Tsunami Warning Center (NTWC) in Palmer, Alaska issues warnings for North America, including Alaska, British Columbia, Oregon, California, the Gulf of Mexico, and the East coast.

In 2005, Chile started to implement the Integrated Plate boundary Observatory Chile (IPOC) which in the following years become a network of 14 multiparameter stations for monitoring the 600-km seismic distance between Antofagasta and Arica. Each station was provided with broadband seismometer, accelerometer, GPS antenna.

After the 2004 Indian Ocean Tsunami which killed almost 250,000 people, a United Nations conference was held in January 2005 in Kobe, Japan, and decided that as an initial step towards an International Early Warning Programme, the UN should establish an Indian Ocean Tsunami Warning System.

The First United Session of the Inter-governmental Coordination Group for the Tsunami Early Warning and Mitigation System in the North Eastern Atlantic, the Mediterranean and connected Seas (ICG/NEAMTWS), established by the Intergovernmental Oceanographic Commission of UNESCO Assembly during its 23rd Session in June 2005, through Resolution XXIII.14, took place in Rome on 21 and 22 November 2005.

Pridaj komentár

Zadajte svoje údaje, alebo kliknite na ikonu pre prihlásenie:

WordPress.com Logo

Na komentovanie používate váš WordPress.com účet. Odhlásiť sa /  Zmeniť )

Google photo

Na komentovanie používate váš Google účet. Odhlásiť sa /  Zmeniť )

Twitter picture

Na komentovanie používate váš Twitter účet. Odhlásiť sa /  Zmeniť )

Facebook photo

Na komentovanie používate váš Facebook účet. Odhlásiť sa /  Zmeniť )

Connecting to %s

%d blogerom sa páči toto: