Planetary system

A planetary system is a set of gravitationally bound non-stellar objects in or out of orbit around a star or star system. Generally speaking, systems with one or more planets constitute a planetary system, although such systems may also consist of bodies such as dwarf planets, asteroids, natural satellites, meteoroids, comets, planetesimals and circumstellar disks. The Sun together with the planets revolving around it, including Earth, is known as the Solar System. 

De revolutionibus orbium coelestium by Nicolaus Copernicus, published in 1543, presented the first mathematically predictive heliocentric model of a planetary system. 17th-century successors Galileo Galilei, Johannes Kepler, and Sir Isaac Newton developed an understanding of physics which led to the gradual acceptance of the idea that the Earth moves round the Sun and that the planets are governed by the same physical laws that governed the Earth.

The Solar System consists of an inner region of small rocky planets and outer region of large gas giants. However, other planetary systems can have quite different architectures. Studies suggest that architectures of planetary systems are dependent on the conditions of their initial formation.

 Many systems with a hot Jupiter gas giant very close to the star have been found. Theories, such as planetary migration or scattering, have been proposed for the formation of large planets close to their parent stars. 

At present, few systems have been found to be analogous to the Solar System with terrestrial planets close to the parent star. More commonly, systems consisting of multiple Super-Earths have been detected.

Planetary systems come from protoplanetary disks that form around stars as part of the process of star formation. During formation of a system much material is gravitationally scattered into far-flung orbits and some planets are ejected completely from the system becoming rogue planets.

The habitable zone around a star is the region where the temperature is just right to allow liquid water to exist on a planet; that is, not too close to the star for the water to evaporate and not too far away from the star for the water to freeze.

The heat produced by stars varies depending on the size and age of the star so that the habitable zone can be at different distances. Also, the atmospheric conditions on the planet influence the planet’s ability to retain heat so that the location of the habitable zone is also specific to each type of planet.

The Milky Way is 100,000 light-years across, but 90% of planets with known distances lie within about 2000 light years of Earth, as of July 2014. One method that can detect planets much further away is microlensing. The WFIRST spacecraft could use microlensing to measure the relative frequency of planets in the galactic bulge vs. galactic disk. 

So far, the indications are that planets are more common in the disk than the bulge. Estimates of the distance of microlensing events is difficult: the first planet considered with high probability of being in the bulge is MOA-2011-BLG-293Lb at a distance of 7.7 kiloparsecs (about 25,000 light years).

As of 1 January 2021, there are 4,395 confirmed exoplanets in 3,242 systems, with 720 systems having more than one planet. Debris disks are also known to be common, though other objects are more difficult to observe.

Pridaj komentár

Zadajte svoje údaje, alebo kliknite na ikonu pre prihlásenie: Logo

Na komentovanie používate váš účet. Odhlásiť sa /  Zmeniť )

Google photo

Na komentovanie používate váš Google účet. Odhlásiť sa /  Zmeniť )

Twitter picture

Na komentovanie používate váš Twitter účet. Odhlásiť sa /  Zmeniť )

Facebook photo

Na komentovanie používate váš Facebook účet. Odhlásiť sa /  Zmeniť )

Connecting to %s

%d blogerom sa páči toto: